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ABSTRACT 
A numerical study has been conducted for natural convection heat transfer for air around two vertically 
separated horizontal heated cylinders placed inside an isothermal rectangular enclosure having finite wall 
conductances. The interaction between convection in the fluid filled cavity and conduction in the walls 
surrounding the cavity is investigated. Results have been obtained for Rayleigh numbers (Ra) between 103 

and 106, dimensionless wall thickness ( ) between 0.5 and 1.375 and dimensionless wall-fluid thermal 
conductivity ratio between 0.01 and 5.0. The results indicate that wall heat conduction reduces the 
average temperature differences across the cavity, partially stabilizes the flow, and decreases natural 
convection heat transfer. The overall heat transfer coefficient for both cylinders is correlated with CRan 

for different 
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NOMENCLATURE 

diameter of cylinders, 
acceleration of gravity, 
cavity height, 
dimensionless height ( = H/D) 
vertical height of cylinder no. 1, 
dimensionless height (= H1/D), 
vertical height of cylinder no. 2, 
dimensionless height (= H2/D), 
Jacobian, 
thermal conductivity, 
half width of cavity, 
dimensionless width (= L/D), 
local Nusselt number, 
average Nusselt number, 
overall Nusselt number, 
Prandtl number (vf/αf), 
Rayleigh number (gβ(TH - TC)D3/vfαf), 
source term, 
temperature of outside surfaces of walls, 
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temperature of heated cylinders, 
dimensionless velocity in the x direction 
(u*D/αf), 
dimensionless velocity in the y direction 
(v*D/αf), 
geometric coefficient, 
geometric coefficient, 
wall thickness, 
dimensionless thickness (= w/D), 
dimensionless coordinate (x = x*/D), 
dimensionless coordinate (y = y*/D), 
thermal diffusivity and geometric 
coefficient, 
dimensionless conductivity ratio 
(= kw/kf), 
thermal expansion coefficient and geo­
metric coefficient, 
geometric coefficient, 
exchange coefficient, 
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η 
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P 

(0 

transformed coordinate, 
dimensionless temperature 

kinematic viscosity, 
transformed coordinate, 
constant, 
general dependent variable, 
dimensionless stream function, 
dimensionless vorticity, 

Superscripts 
* indicates a dimensional quantity, 

Subscripts 
C cooled surface, 
f fluid, 
H heated surface, 
w wall. 
SW,S,SE,etc. South West, South, South East, 

etc. (equation 7) 

INTRODUCTION 

Natural convection heat transfer around horizontal circular cylinders finds numerous practical 
applications in space heating, heat exchangers, solar energy collectors, energy storage systems, 
and electronic devices. As a result, the subject has been of considerable research interest. 

Several studies have been conducted to investigate natural convection heat transfer from 
horizontal cylinders in free space1-4 or bounded by parallel plates5-7. However, comparatively 
little numerical work on free convective heat transfer from circular cylinders confined to an 
enclosure has been reported. Perhaps, it is due to the challenging task of simulating the strong 
interaction between the boundary layer and the adjacent fluid in a geometrically complicated 
enclosure. 

Recently, numerical studies of natural convection heat transfer around two horizontal heated 
cylinders confined to a rectangular enclosure have been reported by one of the authors8,9. The 
effect of the boundary conditions and of the geometric configuration on the heat transfer was 
investigated. These studies neglected, however, the interaction between convection in the fluid 
filled cavity and conduction in the walls surrounding the cavity. Idealized boundary conditions 
corresponding to prescribed temperatures at the cooled wall and perfectly conducting walls at 
adiabatic walls were used. In spite of the fact that these boundary conditions were completely 
justified, there are some physical situations where heat conduction in the material forming the 
enclosure walls must also be considered. An example of such a situation includes circular pipes 
inside walls for space heating. Other examples are reported in the excellent studies of Kim and 
Viskanta10 and Du and Bilgen11 on conjugate heat transfer in a rectangular enclosure. 

The intent of this paper is to investigate numerically natural convection heat transfer from a 
pair of vertically separated horizontal heated cylinders confined to a rectangular enclosure formed 
by finite conductance walls. A mathematical model is formulated and a numerical procedure is 
developed to solve the model equations. Parametric studies are then conducted to examine the 
effect of the Rayleigh number, of the wall thickness and of the thermal conductivity ratio on the 
fluid flow and heat transfer inside the cavity. 

PHYSICAL MODEL AND NUMERICAL PROCEDURE 

The physical model of the problem is illustrated schematically in Figure 1. A two-dimensional 
cavity of height H and of width 2L is formed by walls of uniform thickness W and of thermal 
conductivity kw. The enclosure contains two horizontal circular cylinders situated one above 
the other in the vertical centre-axis. The diameter D of the cylinders serves as the characteristic 
length scale on which the Rayleigh number is based. The lower and upper cylinders are located 
at a distance H1 and H2 respectively from the bottom of the cavity. The outside surface of the 
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walls is maintained at a constant temperature Tc while the cylinders surface is kept a constant 
temperature TH (TH > Tc). 

It is assumed in the analysis that the thermophysical properties of the walls and of the fluid 
are independent of temperature, and the flow is laminar. The fluid is Newtonian, incompressible, 
and the Boussinesq approximation is valid. The fluid motion and heat transfer in the cavity are 
assumed to be two-dimensional and symmetrical about the vertical centreline. Radiation is 
neglected in comparison to convection. 
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With the foregoing assumptions, the governing partial differential equations in dimensionless 
form for the conservation of mass, momentum, and energy are cast in terms of vorticity, stream 
function, and temperature. Moreover, to deal effectively with the geometrical complicated 
solution domain of the present problem, a curvilinear grid, as exemplified in Figure 2, is employed. 
Based on this boundary-fitted coordinate grid, the conservation equations and their boundary 
conditions are cast from the original cartesian reference frame (x, y) to a generalized curvilinear 
grid (ξ, η). The resulting transport equations in the transformed plane are more complicated 
but the boundary conditions are now specified on straight boundaries and the computational 
grid is rectangular and uniformly spaced. Performing this transformation8, the general transport 
equation for the flow property ф takes the following form in the computational space (ξ, η): 

S(ξ, η) is a source term, Γ is an exchange coefficient, and p is a constant. These variables and 
parameters are defined in Table 1. The geometric factors U, V, α, β, γ and the Jacobian J are 
defined as usual as: 

The stream function is set equal to zero around both cylinders, along the wall-fluid interfaces 
and along the vertical centreline. The vorticity boundary condition on solid walls is given by: 

where Δr is the distance between a boundary grid node i and the nearest node i + 1 inside the 
fluid. On the vertical symmetry line, ω = 0. 

A uniform temperature θf = 1 is imposed at the surface of both cylinders while the outside 
surfaces of the enclosure are maintained at a constant temperature θw = 0. The Neumann 

Function 
Temperature (wall) 
Temperature (fluid) 
Vorticity 

Stream function 

Table 1 Variables and parameters of governing transport equation (1) 
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boundary conditions for the temperature are, at the horizontal wall-fluid interfaces, 

at the vertical wall-fluid interface, 

and, at the vertical symmetry line, 

The finite difference equations are obtained on integrating the general governing equation (1), 
over each of the control volumes in the (ξ, η) plane. The resulting finite difference scheme has 
the form: 
ASW·фSW + AS·фS + ASE·фSE + AW·фW + AP·фP + AE·фE 

+ ANW·фNW + AN·фN + ANE·фNE = Q (7) 
Expressions for the coefficients in (7) may be found in Reference 12. The terms arising from the 
non-orthogonality of the grid appear in the coefficients of the crossed terms ASW, ASE, ANW, 
and ANE. Q is the discretized source term S. The advection-diffusion part of coefficients AS, 
AW, AP, AE, and AN is modified for stability according to the power-law scheme of Patankar13. 

Equation (7) is solved iteratively for θ, ω and ψ using an alternating line by line solver. The 
temperature equation is solved for the walls and the fluid simultaneously by setting u = v = 0 
across the walls. Convergence is declared when the largest residual for all difference equations 
is smaller than 10 -3. More stringent convergence criteria were retained but the results did not 
show noticeable changes in the final solutions. 

The foregoing computational model was thoroughly tested for natural convection heat transfer 
inside enclosures with irregular boundaries and for different flow conditions. Its accuracy was 
also checked by comparison with experimental data for natural convection heat transfer from 
heated protrusions on a vertical wall in a rectangular cavity. These validation analyses are 
reported in References 8, 9 and 12 and need not be repeated here. 

RESULTS AND DISCUSSION 

There are a large number of independent parameters governing 
the problem, and it is not feasible to obtain solutions for the complete range of interest. Extensive 
numerical experiments were, however, conducted for combined conduction and laminar natural 
convection around horizontal circular cylinders of fixed position, i.e. 
confined to a rectangular enclosure of height and width The wall thickness 

ranged from 0.5 to 1.375 and its thermal conductivity ratio a ranged from 0.01 to 5.0. 
Obviously, as increases, the available space for the fluid confined to the fixed cavity size 
diminishes. Due to the possible applications that motivated this analysis, the Prandtl number 
(Pr) was set to a constant value for air (Pr = 0.71) and the Rayleigh number (Ra) ranged from 
103 to 106. 

The accuracy of the present calculation has been investigated by performing a grid refinement 
study. As a result, simulations reported here were conducted with grid sizes ranging from 31 x 83 
to 35 x 91 non-uniformly distributed nodes. Results obtained with finer meshes did not show 
noticeable changes in the predicted flow fields and in the local heat transfer coefficients. 
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As an example, Figures 3 and 4 illustrate the contours of the streamlines and of the isotherms 
for few cases studied with a wall of thickness For both Figures, the thermal conductivity 
ratio increases from the top to the bottom of the picture and the Rayleigh number (Ra) 
increases from the left to the right. In the present study, the Rayleigh number is based on the 
overall temperature difference TH — TC. In the cases for which is small the effective 
Rayleigh number in the air is, however, very low and, as a result, the convective motion is very 
weak. Figures 3 and 4 clearly show that the buoyancy driven circulation intensifies as and/or 
Ra increase in magnitude. For small thermal conductivity ratios, i.e. and, in general, 
for low and intermediate Rayleigh numbers, it is seen that three independent recirculating bubbles 
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prevail in the cavity: one small eddy at the bottom of the cavity, one between both cylinders 
and one at the top. As and Ra increase (it becomes evident for . and Ra > 105), the 
recirculating eddy in the middle of the cavity stretches and eventually engulfs the recirculating 
eddy at the bottom. At the same time, a small counterclockwise recirculating eddy appears 
above the top cylinder. This flow behaviour, as it will be seen later, strongly affects heat transfer 
around the top cylinder and along the top horizontal wall-fluid interface. For the flow 
remains nearly stagnant as the effective Rayleigh number is small. The thermal resistance across 
the cavity walls is significant as shown by the temperature gradients in Figure 4. Consequently, 
the temperature distribution inside the fluid filled cavity is nearly uniform. For the 
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change in the thermal behaviour of the cavity is noticeable. The thermal resistance across the 
walls becomes smaller than that of the fluid filled cavity and the temperature gradients across 
the fluid layer are considerably perturbed by the stronger buoyancy driven flows. On the other 
hand, as the Rayleigh number increases in magnitude, the thermal resistance across the fluid 
filled cavity becomes smaller and the temperature drop through the cavity wall increases. This 
behaviour is clearly illustrated by the second row in Figure 4 for which = 1.0. For Ra = 103, 
the flow is nearly stagnant. Conduction is the prevailing mode of heat transfer inside the fluid 
and the isotherms remain equidistant and parallel to the cooled horizontal and vertical walls. 
The thermal resistance across the fluid filled cavity is nearly the same as that of the walls. As 
the Rayleigh number increases, however, buoyancy driven convection inside the fluid prevails 
increasingly over conduction thus reducing the resistance to heat flow across the fluid layer. 
Consequently, the thermal resistance across the cavity is now ruled by the conduction resistance 
through the walls. 

Similar numerical experiments were carried out for different wall thickness, i.e. = 0.5, 1.25 
and 1.375. For 1 = 0.5, the cavity space for the fluid is larger and as a result, the middle 
recirculation eddy engulfs the bottom recirculation bubble for values of and Ra smaller in 
magnitude than those for the corresponding cases with = 1.0. Furthermore, for > 1.0 and 
high Rayleigh numbers, only one large recirculation eddy prevails in the entire cavity. The 
secondary counterclockwise eddy at the top of the cavity for > 1.0 and Ra > 105 (Figure 3) 
is not observed. On the other hand, for the cases with the smallest fluid filled cavity spaces, i.e. 

> 1.25, the three recirculation eddies (top, middle and bottom) never merge even for a = 5.0 
and Ra = 106 as the gaps between the cylinders and the vertical wall-fluid interface are too 
narrow (= 0.125). 

Due to the limited space, the results for the streamlines and isotherms for = 0.5, 1.25 and 
1.375 are not shown here. However, the main conclusion that can be drawn from these 
experiments is that the fluid space clearly affects the natural convection flow patterns and 
therefore the heat transfer rates around the cylinder surfaces and along the wall-fluid interfaces. 

The local Nusselt numbers around the top and the bottom cylinder for =1.0 and = 5.0 
are depicted in Figures 5a and 5b, respectively. The local Nusselt number is defined as: 
Nu = —∂∂f/∂n where n is a normal coordinate to the cylinder surface. The angle, in degrees, 
is measured counterclockwise from the bottom of the cylinder. In both cases, the heat transfer 
coefficient is, as expected, larger for larger thermal conductivity ratios and increasing Rayleigh 
numbers. The Nusselt number has a maximum value underneath the bottom cylinder (0 degrees) 
and decreases steadily as the angle increases. For the top cylinder and when natural convection 
heat transfer prevails, i.e. Ra > 105, two maxima are observed. A first maximum is reached 
underneath the top cylinder (0 degrees) where cold fluid is brought by the large clockwise 
recirculating eddy. A second maximum is reached on top of the upper cylinder (180 degrees) 
where cold fluid from the small counterclockwise recirculation bubble impinges on its surface. 

Figure 6 illustrates the variation of the average Nusselt number around each cylinder as a 
function of the Rayleigh number and for different thermal conductivity ratios and wall thicknesses. 
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The average Nusselt number at the cylinder surface is given by: 

For all cases, the cooling rate around the bottom cylinder remains higher than that for the top 
cylinder as the latter is poorly cooled by the hot fluid rising from the former. This difference in 
the average Nusselt numbers increases as the buoyancy driven convection intensifies. On the 
other hand, when diminishes, conduction heat transfer inside the fluid filled cavity plays an 
increasingly important role compared to convection heat transfer and the cooling rates around 
both cylinders become closer. Moreover, increasing the wall thickness decreases the available 
space for the fluid and increases the wall thermal resistance. Consequently, the buoyancy driven 
motion is diminished and the resulting heat transfer rates are reduced. 

Figure 7 displays the local Nusselt number profile at the vertical wall-fluid interface. As 
expected, for convection dominated heat transfer (Ra > 105), maximum heat transfer is reached 
at the top of the wall where warm fluid impinges after being heated by both cylinders. As the 
fluid descends along the wall, heat is transferred to it, the liquid cools and Nu decreases. At the 
bottom of the interface, Y = 0, Nu is null as the isotherms become perpendicular to the vertical 
wall (Figure 4). 

The local Nusselt numbers along the top horizontal wall-fluid interface are shown in Figure 
8 for = 1.0 and = 1.375. For Ra < 104, the local Nusselt number is nearly uniform left 
of the midpoint and then decreases steadily beyond it. For Ra > 105, the heat transfer coefficient 
increases rapidly along the top horizontal wall and reaches a maximum near the corner of the 
fluid filled cavity. This is caused by the presence of the small counterclockwise recirculating eddy 
which forces cold fluid to impinge on the top wall. As Ra increases from 105 to 106, the top 
recirculation bubble increases in size and pushes the location of the maximum heat transfer 
further to the right. Once again, a thicker wall dampens the buoyancy driven motion and 
diminishes the local Nusselt number along the top wall. 
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0.5 
1.0 
1.25 
1.375 

0.5 
1.0 
1.25 
1.375 

0.5 
1.0 
1.25 
1.375 

Table 2 Overall Nusselt number 

104 

0.428 
0.204 
0.156 
0.138 

1.821 
1.173 
1.085 
1.081 

2.765 
2.224 
2.529 
3.050 

Ra 

105 

= 0.1 
0.468 
0.211 
0.157 
0.138 

= 1.0 
2.506 
1.465 
1.193 
1.123 

= 5.0 
4.660 
3.574 
3.131 
3.391 

5 x 105 

0.495 
0.220 
0.161 
0.140 

2.934 
1.687 
1.434 
1.238 

6.186 
4.669 
4.534 
3.985 

106 

0.503 
0.225 
0.164 
0.143 

3.039 
1.780 
1.334 
1.307 

6.874 
5.128 
4.043 
4.330 

The results for the overall Nusselt numbers around both cylinders have been calculated 
over a range of Rayleigh numbers, wall thicknesses and thermal conductivity ratios. The overall 
Nusselt number is defined here as: 

where are the average Nusselt numbers for the top and bottom cylinders 
respectively. As an example, Figure 9 displays the variation of with Ra for different The 
overall Nusselt numbers for 104 < Ra < 106,0.1 < < 5.0and0.5 < < 1.375 are summarized 
in Table 2. Scrutiny of Figure 9 reveals that for convection dominated heat transfer varies 
logarithmically with Ra and the slope increases with These results were correlated for 
104 < Ra < 106 with a least squares fit by the following equation 

C and n are constants which depend on the wall thickness and on the thermal conductivity 
ratio Their values are listed in Table 3. These results clearly show that the overall Nusselt 
numbers are more sensitive to the thermal conductivity ratio than to the wall thickness. 
Obviously, as decreases and/or increases, decreases. 
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Table 3 Constants C and n in correlation (8) 

0.5 
— 
— 
1.0 
— 
— 
1.25 
— 
— 
1.375 
— 
— 

0.1 
1.0 
5.0 

0.1 
1.0 
5.0 
0.1 
1.0 
5.0 

0.1 
1.0 
5.0 

c 
0.3084 
0.6559 
0.4537 

0.1667 
0.5100 
0.4212 

0.1405 
0.6513 
0.8272 

0.1295 
0.7293 
1.4894 

n 

0.0359 
0.1132 
0.1986 
0.0213 
0.0910 
0.1830 

0.0107 
0.0550 
0.1204 
0.0064 
0.0406 
0.0754 

CONCLUSION 

A numerical study was conducted for natural convection heat transfer around two horizontal 
heated cylinders confined to an isothermal enclosure having finite wall conductances. The 
interaction between convection in the fluid filled cavity and conduction in the walls surrounding 
the cavity was investigated for a wide range of thermal conductivity ratios, fluid spaces and 
Rayleigh numbers. The results showed the relative importance of the Rayleigh number and of 
the thermal conductivity ratio on the thermal behaviour of the cavity. Heat conduction in the 
walls not only reduces the average temperature difference across the cavity but also produces 
partial stabilization of the flow and decreases natural convection heat transfer. The overall 
Nusselt number was correlated with CRan. 
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